MTH205: Review Problems / Final / Spring 15

Q1. Does the differential equation: $y^{\prime}=y / x+\sqrt{x}$ possess a unique solution through the point $(0,0)$? Give reasons.

Q2. Find the critical points and phase portrait of $y^{\prime}=y^{2}-y^{3}$ and classify each point.

Q3. Classify each of the following differential equations as, separable, exact, linear, homogeneous, or Bernoulli. Then find the general solution of each of them.
a. $2 x y y^{\prime}+y^{2}=2 x^{2}$,
b. $y^{\prime}=x y+\sqrt{y}$,
c. $y^{\prime}=\frac{x-2 x y}{3 y^{2}+x^{2}}$,
d. $y^{\prime}=e^{3 x-2 y}$

Q4. Suppose that a large mixing tank initially holds 500 gallons of water in which 50 pounds of salt have been dissolved. Water is pumped into the tank at a rate of r_{1} $\mathrm{gal} / \mathrm{min}$, and then when the solution is well stirred it is pumped out at a rate of r_{2} $\mathrm{gal} / \mathrm{min}$. Determine a differential equation then solve it, for the amount $x(t)$ of the salt in the tank at any time t for each of the following cases:
a. $r_{1}=r_{2}=4$, and the entering water is pure.
b. $r_{1}=3, r_{2}=2$, and the entering water contains salt with concentration $2 \mathrm{lb} / \mathrm{gal}$.

Q5. Initially 100 milligrams of radioactive substance were present. After 6 hours the mass had decreased by 3%. If the rate of decay is proportional to the amount of the substance present at any time, find the amount remaining after 24 hours.

Q6 Find an interval around $x=0$ for which the initial value problem

$$
\sqrt{x+1} y^{\prime \prime}+\frac{1}{4-x^{2}} y^{\prime}+y=\sin (x), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

has a unique solution.

Q7. Find the general solution.
a. $x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0$,
b. $y^{(4)}+y^{\prime \prime}=0$,
c. $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{3}$

Q8. Given that $y_{1}=e^{x}$ is a solution of the differential equation.

$$
(x+1) y^{\prime \prime}-(x+2) y^{\prime}+y=0
$$

Find the general solution.

Q9. Set up the appropriate form of the particular solution y_{p}, but do not determine the values of the coefficients.

$$
y^{(4)}+9 y^{\prime \prime}=2 x+\left(x^{2}+1\right) \sin (3 x)
$$

Q10. Use the method of undetermined coefficients to find the solution of the I.V.P.

$$
y^{\prime \prime}+4 y=2 \sin (2 t) \quad, \quad y(0)=1, y^{\prime}(0)=0
$$

Q11. Use the variation of parameters method to find the general solution of the differential equation:

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln x
$$

Q12. A 32 - pound weight stretches a spring $32 / 5$ feet. Initially the weight is released 1 foot below the equilibrium position with a downward velocity of $5 \mathrm{ft} / \mathrm{sec}$. Determine the equation of the motion, if the surrounding medium offer a damping force numerically equal to 2 times the instantaneous velocity and the weight is driven by an external force equal to $f(t)=12 \cos 2 t+3 \sin 2 t$. Graph the transient and the steady-state solutions on the same coordinate axes.

Q13. A 64 - pound weight stretches a spring 0.32 foot. Initially the weight is released $2 / 3$ foot above the equilibrium position with a downward velocity of $5 \mathrm{ft} / \mathrm{sec}$.
a. Determine the equation of the motion.
b. What are the amplitude and the period of the motion?
c. At what time does the mass pass through the equilibrium position for the second time?
d. At what time does the mass attain its extreme displacement for the second time?

Q16. Use translation and other theorems to find:
a) $L\left\{e^{a t} \sin t\right\}$
b) $L^{-1}\left\{\frac{s}{(s+1)^{3}}\right\}$
c) $L\{g(t)\}, g(t)=\left\{\begin{array}{cc}0, & 0 \leq t<1 \\ t^{2}, & t \geq 1\end{array}\right.$
d) $L^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\}$
e) $L\left\{t^{3} \cos 5 t\right\}$

Q17. Use the Laplace transform to solve the following initial value problems
a. $y^{\prime \prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1$, where $\quad f(t)=\left\{\begin{array}{lc}0, & 0 \leq t<\pi \\ 1, & \pi \leq t<2 \pi \\ 0, & t \geq 2 \pi\end{array}\right.$
b. $y^{\prime \prime}-4 y=e^{t} \quad, \quad y(0)=1, y^{\prime}(0)=0$
c. $y^{\prime \prime}+y=\delta(t-\pi), y(0)=1, y^{\prime}(0)=0$

Q18. Use the Convolution Theorem to
a. evaluate $L\left\{t^{2} * t e^{t}\right\}$ and $L^{-1}\left\{\frac{1}{s^{3}(s-1)}\right\}$
b. solve $y^{\prime}=1-\sin t-\int_{0}^{t} y(\tau) d \tau, \quad y(0)=0$

Q19. Solve $y^{\prime \prime}+2 y+10 y=f(t), y(0)=0, \quad y^{\prime}(0)=0$, where f is periodic with period $T=2 \pi$ and $f(t)=\left\{\begin{array}{cc}1, & 0 \leq t<\pi \\ -1, & \pi \leq t<2 \pi\end{array}\right.$

Q20. Use Laplace Transform to solve the system

$$
\begin{aligned}
& x^{\prime}=2 y+e^{t}, \quad x(0)=1 \\
& y^{\prime}=8 x-t, \quad y(0)=1
\end{aligned}
$$

Answers to some final review problems

Q2. critical points $y=0, y=1 . y=1$ attractor (stable). $y=0$ semi-stable.
Q3. (a) $y^{\prime}=\frac{2 x^{2}-y^{2}}{2 x y}$ (Homogeneous). If use substitution $u=\frac{y}{x}$, end up with $\ln \left|2-3 u^{2}\right|=$ $-3 \ln |x|+C$. Can suppose $x>0$. Get $y^{2}=\frac{1}{3}\left(2 x^{2}+\frac{C}{x}\right)$.
Note this DE can also be written $y^{\prime}+\frac{1}{2 x} y=x y^{-1}$ (Bernoulli). Try getting same solution using Bernoulli substitution $u=y^{2}$. End up with linear equation $u^{\prime}+\frac{1}{x} u=2 x$.
(b) $y^{\prime}-x y=y^{1 / 2}$. Bernoulli. Set $u=y^{1 / 2}$. End up with $2 u^{\prime}-x u=1$. Linear, $\mu(x)=e^{-x^{2} / 4}$.
(c) $y^{\prime}=f(x, y)$ with $f(t x, t y) \neq f(x, y)$ (not homogeneous). Rewrite $(2 x y-x) d x+\left(3 y^{2}+x^{2}\right) d y=0$. This is exact. Potential $f(x, y)=x^{2} y-\frac{x^{2}}{2}+y^{3}$. Solution $f(x, y)=c$.
(d) Separable. To solve can use either the linear substitution $u=3 x-2 y$, or use separability. Easier to use separability. Answer: $\frac{1}{2} e^{2 y}=\frac{1}{3} e^{3 x}+c$ in implicit form.
If you use substitution $u=3 x-2 y$, you get to $\frac{u^{\prime}}{3-2 e^{u}}=1$ which can be solved by writing this equation $\frac{e^{-u}}{3 e^{-u}-2} d u=d x$ so that $\ln \left|3 e^{-u}-2\right|=-3 x+C$.
Integrating and simplifying get the same implicit equation $\frac{1}{2} e^{2 y}=\frac{1}{3} e^{3 x}+c$.
Q4. $A(t)$ amount of salt at time t in tank. Solve IVP $\frac{d A}{d t}=-\frac{A}{500+\left(r_{1}-r_{2}\right) t}, A(0)=50$.
Q5. $A^{\prime}(t)=-k A(t)$ with $k>0$ (proportionality). $A(0)=100 . A(6)=0.97 A(0)$. Need $A(24)$. Answer: Can solve for $A(t)=100 e^{-0.005 t}$, so that $A(24)=885$.
Can also argue (think about it) that $A(24)=(0.97)^{4} A(0)$ (without any calculation).
Q6.] $-1,2[$ (0 must be in interval). See theorem 4.1.1.
Q7. (a) Cauchy-Euler. Auxiliary polynomial $m^{3}+3 m^{2}-4=(m-1)\left(m^{2}+4 m+4\right)$. General solution $y=c_{1} x+c_{2} x^{-2}+c_{3} x^{-2} \ln x$.

Q8. Reduction of order: set $y=u e^{x}$. Get $(x+1) u^{\prime \prime}+x u^{\prime}=0$. Solve by setting $w=u^{\prime}$.
Answer: $w=C(x+2) e^{-x}$ so that $u=C_{1}(x+2) e^{-1}+C_{2}$ and $y=u x=C_{1}(x+2)+C_{2} e^{x}$.
Q9: $y_{p}=x^{2}(a x+b)+x\left[\left(c_{1} x^{2}+c_{2} x+c_{3}\right) \cos 3 x+\left(d_{1} x^{2}+d_{2} x+d_{3}\right) \sin (3 x)\right]$.
Q10: particular solution $y_{p}(t)=-\frac{t}{2} \cos (2 t)$ and general solution $y=c_{1} \cos 2 t+c_{2} \sin 2 t-\frac{1}{2} t \cos (2 t)$. Find c_{1}, c_{2} from initial conditions.

Q14: 0 is an ordinary point. Singular points are the roots of $(x+1)\left(x^{2}+2\right)$ that is $-1, \pm i \sqrt{2}$. The least distance from 0 to any of the singular points is 1 . So R is at least 1 .

Q16. (c) $\left.\mathcal{L}\{g(t)\}=\mathcal{L}\left(t^{2} u(t-1)\right\}=e^{-s} \mathcal{L}\left\{(t+1)^{2}\right)\right\}$. Write $(t+1)^{2}=t^{2}+2 t+1$ and compute. Many of the Laplace questions were solved in class

